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o About 100 billion neurons in human brain
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Synaptic terminals

Dendritic branches

Figure credits: Wikipedia
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The dilemma: To watch or not to watl!
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Let’'s use our brain |Il|
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Let’'s use our brain |Il|
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There is a division of responsibilities ||||

Favorite genre

]
5
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Favorite actors
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Neurons in the brain have a hierarchy ||||l|

Categorical judgments,

decision making Simple visual forms

To spinal cord
ger muscle ———160-220 ms
260 ms

Picture from Simon Thorpe
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Threshold Logic Unit W

@ First Mathematical Model for a neuron

Dr. Konda Reddy Mopuri dl-01/Artificial Neuron 9



Threshold Logic Unit D R

@ First Mathematical Model for a neuron
@ McCulloch and Pitts, 1943 — MP neuron
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Threshold Logic Unit

@ First Mathematical Model for a neuron
@ McCulloch and Pitts, 1943 — MP neuron

® Boolean inputs and output

ye{0,1}
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Threshold Logic Unit

@ First Mathematical Model for a neuron
@ McCulloch and Pitts, 1943 — MP neuron

® Boolean inputs and output

ye{0,1}

flz)= ]l(zfci > 0)
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Threshold Logic Unit

@ Inputs can be of excitatory or inhibitory nature
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Threshold Logic Unit W

@ Inputs can be of excitatory or inhibitory nature
@ When an inhibitory input is set (=1) output — 0

Dr. Konda Reddy Mopuri dl-01/Artificial Neuron 10



Threshold Logic Unit W

@ Inputs can be of excitatory or inhibitory nature

@ When an inhibitory input is set (=1) output — 0

@ Counts the number of ‘ON’ signals on the excitatory inputs versus the
inhibitory
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Example Boolean functions
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Threshold Logic Unit W

@ let's implement simple functions
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@ let's implement simple functions

@ xy’

X

Dr. Konda Reddy Mopuri dl-01/Artificial Neuron 12



Threshold Logic Unit

@ let's implement simple functions
@ xy'

X

@ NOR

Dr. Konda Reddy Mopuri dl-01/Artificial Neuron

26bab 0888 dend H0% PaTenl
Indian nstitute of Technology Hyderabad

12



26bab 0888 dend H0% PaTenl
Indian Institute of Technology Hyderabad

Threshold Logic Unit

@ What one unit does? - Learn linear separation
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@ What one unit does? - Learn linear separation
o line in 2D, plane in 3D, hyperplane in higher dimensions
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Threshold Logic Unit W

@ What one unit does? - Learn linear separation
o line in 2D, plane in 3D, hyperplane in higher dimensions

@ No learning; heuristic approach
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Perceptron

@ Frank Rosenblatt 1957 (American Psychologist)
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@ Frank Rosenblatt 1957 (American Psychologist)
@ Very crude biological model
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@ Frank Rosenblatt 1957 (American Psychologist)
@ Very crude biological model

@ Similar to MP neuron - Performs linear classification
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Perceptron B

@ Frank Rosenblatt 1957 (American Psychologist)
@ Very crude biological model
@ Similar to MP neuron - Performs linear classification

@ Inputs can be real, weights can be different for different i/p
components
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Perceptron

@ Frank Rosenblatt 1957 (American Psychologist)
@ Very crude biological model
@ Similar to MP neuron - Performs linear classification

@ Inputs can be real, weights can be different for different i/p
components

®
1 when) , wiz; +b>0
o=

0 else
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Perceptron

@ For simplicity we consider +1 and -1 responses

1 when 2 > 0

o(x) =
(z) —1 else

f(x)=0o(wT -x+b)
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@ For simplicity we consider +1 and -1 responses

o(x) =

1 when 2 > 0
—1 else

f(x)=0o(wT -x+b)

@ In general, o(-) that follows a linear operation is called an activation
function
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@ For simplicity we consider +1 and -1 responses

{1 when 2 > 0
o(x) =

—1 else

f(x)=0o(wT -x+b)

@ In general, o(-) that follows a linear operation is called an activation
function

@ w are referred to as weights and b as the bias
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Perceptron vs. MP neuron

@ Perceptron is more general computational model
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Perceptron vs. MP neuron

@ Perceptron is more general computational model

@ Inputs can be real
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Perceptron vs. MP neuron “ e e e

@ Perceptron is more general computational model
@ Inputs can be real

@ Weights are different on the input components
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Perceptron vs. MP neuron “ e e e

@ Perceptron is more general computational model
@ Inputs can be real
@ Weights are different on the input components

@ Mechanism for learning the weights
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Weights and Bias

@ Why are the weights important?

Bias b
Weights
Constant 1
N \
Weighted
\ sum
\/ W, % )
1
\ out
2y ey —
-
inputs — - W, /'
pi o , —> W, Step Function
N/
g \__— W
N/

Figure credits: DeepAl
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Weights and Bias

@ Why are the weights important?
@ Why is it called ‘bias’? What does it capture?

Bios b
Weights
Constant 1
</ w,
0
. Weighted
X Sum
N == W \ )
Out
o el —
-
inputs — < W, /
o ’/-> n-1 Step Function
o)
w
.\’n / n
-

Figure credits: DeepAl
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Figure credits: Francois Fleuret
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Figure credits: Francois Fleuret
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Perceptron Learning algorithm o

@ Training data (2%,y%) € RP x {~1,1},i=1,...,N
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Perceptron Learning algorithm

@ Training data (2%,y%) € RP x {~1,1},i=1,...,N
@ Start with k< 1 and wi =0
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Perceptron Learning algorithm “ .

@ Training data (2%,y%) € RP x {~1,1},i=1,...,N
@ Start with k< 1 and wy =0
@ While 3 7 € {1,2... N} such that y {(wi - x1) <0, update

wk+1_wk+y x!
k+—k+1
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Perceptron Learning algorithm “

@ Training data (2%,y%) € RP x {~1,1},i=1,...,N
Start with k < 1 and wi, =0
@ While 3 7 € {1,2... N} such that y {(wi - x1) <0, update

wk+1_wk+y x!
k+—k+1

@ Note that the bias b is absorbed as a component of w and x is
appended with 1 suitably

®

Dr. Konda Reddy Mopuri dl-01/Artificial Neuron 20



Perceptron Learning Algorithm |||

» Colab Notebook: Perceptron-learning
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https://colab.research.google.com/drive/1TNavc9-jzJXc1N05l06KYfgaSmu7zqxN?usp=sharing
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Perceptron Learning Algorithm " s

@ Convergence result: For linearly separable dataset, the algorithm
converges after finite iterations (refer to suggested readings)
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Perceptron Learning Algorithm " s

@ Convergence result: For linearly separable dataset, the algorithm
converges after finite iterations (refer to suggested readings)

@ Stops as soon as it finds a separating boundary
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Perceptron Learning Algorithm " s

@ Convergence result: For linearly separable dataset, the algorithm
converges after finite iterations (refer to suggested readings)

@ Stops as soon as it finds a separating boundary

® Other algorithms maximize the margin from the boundary to the
samples
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@ Generalized to non-binary (real) input
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@ Generalized to non-binary (real) input

@ Considered unequal importance to the inputs
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So far...

@ Generalized to non-binary (real) input
@ Considered unequal importance to the inputs
@ Avoided heuristics with ‘learning’ the Threshold
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@ Generalized to non-binary (real) input

@ Considered unequal importance to the inputs
@ Avoided heuristics with ‘learning’ the Threshold
@ What if the data is not linearly separable?
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