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The Neuron

About 100 billion neurons in human brain

Figure credits: Wikipedia
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The dilemma: To watch or not to watch?
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Let’s use our brain
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Let’s use our brain
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It’s a network of many neurons
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There is a division of responsibilities
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Neurons in the brain have a hierarchy
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Threshold Logic Unit
1 First Mathematical Model for a neuron

2 McCulloch and Pitts, 1943→ MP neuron
3 Boolean inputs and output

4

f(x) = 1(
∑

i

xi ≥ θ)
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Threshold Logic Unit

1 Inputs can be of excitatory or inhibitory nature

2 When an inhibitory input is set (=1) output → 0
3 Counts the number of ‘ON’ signals on the excitatory inputs versus the

inhibitory
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Threshold Logic Unit

Example Boolean functions
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Threshold Logic Unit

1 let’s implement simple functions

2 xy’

3 NOR
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Threshold Logic Unit

1 What one unit does? - Learn linear separation

line in 2D, plane in 3D, hyperplane in higher dimensions
2 No learning; heuristic approach
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Perceptron

1 Frank Rosenblatt 1957 (American Psychologist)

2 Very crude biological model
3 Similar to MP neuron - Performs linear classification
4 Inputs can be real, weights can be different for different i/p

components
5

f(x) =
{

1 when
∑

i wixi + b ≥ 0
0 else
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Perceptron
1 For simplicity we consider +1 and -1 responses

σ(x) =
{

1 when x ≥ 0
−1 else

f(x) = σ(wT · x + b)

2 In general, σ(·) that follows a linear operation is called an activation
function

3 w are referred to as weights and b as the bias
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Perceptron vs. MP neuron

1 Perceptron is more general computational model

2 Inputs can be real
3 Weights are different on the input components
4 Mechanism for learning the weights
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Weights and Bias

1 Why are the weights important?

2 Why is it called ‘bias’? What does it capture?

Figure credits: DeepAI
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Perceptron

Figure credits: François Fleuret
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Perceptron

Figure credits: François Fleuret
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Perceptron Learning algorithm

1 Training data (xi, yi) ∈ RD × {−1, 1}, i = 1, . . . , N

2 Start with k ← 1 and wk = 0
3 While ∃ i ∈ {1, 2 . . . N} such that yi(wT

k · xi) ≤ 0, update
wk+1 = wk + yi · xi

k ← k + 1
4 Note that the bias b is absorbed as a component of w and x is

appended with 1 suitably
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Perceptron Learning Algorithm

Colab Notebook: Perceptron-learning
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https://colab.research.google.com/drive/1TNavc9-jzJXc1N05l06KYfgaSmu7zqxN?usp=sharing


Perceptron Learning Algorithm

1 Convergence result: For linearly separable dataset, the algorithm
converges after finite iterations (refer to suggested readings)

2 Stops as soon as it finds a separating boundary
3 Other algorithms maximize the margin from the boundary to the

samples
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So far...

1 Generalized to non-binary (real) input

2 Considered unequal importance to the inputs
3 Avoided heuristics with ‘learning’ the Threshold
4 What if the data is not linearly separable?
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